JOURNAL OF SOLID STATE CHEMISTRY 3, 525-528 (1971)

Some Proposals for Transformation Mechanisms of the Li₂ZrF₆, Trirutile and Na₂SiF₆ Structure Types: Simple Cation Rearrangements

JEAN GALY AND STEN ANDERSSON

Service de Chimie Minérale Structurale de la Faculté des Sciences de Bordeaux associe au CNRS, 33-Talence, France and

Chemical Centre, Department of Inorganic Chemistry 2, Box 740, S-220 07 Lund 7, Sweden.

Received March 8, 1971

Under high pressure, rutile transforms into a structure of the α -PbO₂ type. In a previous paper (1) we proposed a simple mechanism for this transformation which is illustrated in Fig. 1. We now suggest similar cation displacements to interconvert the Li₂ZrF₆, trirutile, Na₂SiF₆ and columbite structure types.

When Li_2NbOF_5 was reported (2) as being isostructural with Li_2ZrF_6 (3), a picture was made showing its relation to the rutile structure. In Figs. 2*a* and *b*, the structures of trirutile and Li_2NbOF_5 are compared; Fig. 3 shows how the Li_2ZrF_6 structure type can transform into the trirutile type if 50% of the cations are shifted in the way

525

GALY AND ANDERSSON

FIG. 2. In (a) the Li₂ZrF₆ structure type (Li₂NbOF₅) is given. In (b) the trirutile structure of the composition AB_2X_6 . In both the structures, A corresponds to filled circles, and open circles are the B-atoms.

indicated by the curved arrows, and without disorder. To our knowledge, no such transformation has been reported for the compounds Li_2NbOF_5 and Li_2ZrF_6 . However, α - Li_2SnF_6 of the Li_2ZrF_6 type has been found to transform to a structure of the trirutile type, designated β - Li_2SnF_6 at 510°C (4).

Another interesting transformation was reported recently (5, 6). At about 400°C, α -Li₂GeF₆, of the trirutile type, transforms to β -Li₂GeF₆ which has the Na₂SiF₆ type structure (7). Figure 4 shows the Na₂SiF₆ structure projected along the *c*-axis, and Fig. 5 the trirutile structure in an analogous projection. The geometrical relation between these structures can be shown by considering the Na₂SiF₆ type. The cations in the octahedra drawn with heavy lines are at $z = \frac{1}{2}$, those in the lighter octahedra at z = 0. If the metal atoms at z = 0 in *m*-planes move to $z = \frac{1}{2}$, and those at $z = \frac{1}{2}$ in *n*-planes to z = 0, the trirutile structure is obtained. This involves half the cations passing through octahedral faces along half the *c*-axis; the anion lattice remains intact. If the A and B atoms keep their relative order during the transformation, the ordered Na₂SiF₆ structure type may, in the reverse way, be geometrically derived directly from the ordered trirutile type. That β -Li₂SnF₆ and β -Li₂GeF₆ are formed as ordered compounds, with, respectively, the trirutile and Na₂SiF₆ structures, indicates that the geometrical proposals described here may very well be correct mechanisms.

All these compounds have approximately the same (hexagonally close packed) anion arrangement. At very high pressures the preferred cation arrangement seems to be like that in the α -PbO₂

526